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Abstract— Connected and automated vehicles (CAVs) have
been widely applied to vehicle-based traffic control in mixed-
autonomy systems that consist of CAVs and human-driven
vehicles (HVs). The control designs of CAVs allow them to drive
smoothly, cooperate, and stabilize the flow of traffic. However,
these controllers must also ensure safe behaviors for CAVs as
well as consider their potential impact on the safety of following
HVs. In this paper, we propose nonlinear controllers for a pair
of CAVs that respond to each other whilst traveling amongst
HVs. The controllers seek to stabilize traffic, while the safety
of CAVs in terms of front-end collisions is formally guaranteed
via control barrier functions. We analyze how the coordination
of CAVs affects stability and safety in the mixed traffic system.
The efficacy of the proposed controllers is demonstrated by
numerical simulations.

Index Terms— Connected and automated vehicle, mixed traf-
fic, stability analysis, safety-critical control

I. INTRODUCTION

Connected and automated vehicles (CAVs) have shown
great potential in improving traffic systems from multiple
aspects, such as increasing capacity, reducing emissions,
and mitigating congestion. Before fully automated traffic
becomes a reality, there will inevitably be a long transition
period of mixed traffic, where CAVs co-exist with human-
driven vehicles (HVs). Therefore, controller design for CAVs
in mixed traffic has received considerable attention.

Both theory [5], [7] and field experiments [14] have shown
that CAVs are effective in smoothing (stabilizing) traffic and
reducing congestion. Multiple types of stabilizing controllers
have been proposed to leverage the connectivity between
CAVs [11], [13], [15], [16] in various traffic scenarios.

While improving the stability of mixed traffic is highly
beneficial, it must be accomplished in a way that the safety of
the individual CAVs is ensured. It has been shown that safety,
especially avoiding front-end collisions, is one key index
affecting the public acceptance of CAVs [6]. Control design
methods that guarantee safety for CAVs include reachability
analysis [1], [12], model predictive control [8], linear matrix
inequalities [7], and control barrier functions (CBFs) [3],
[17], [19]. Remarkably, CBFs have the flexibility to syn-
thesize safety-critical controllers from pre-designed nominal
controllers [2], [10] such as those stabilizing traffic. In our
previous work [19], we leveraged this idea and utilized CBFs
to develop safety-critical traffic control (STC) that enables
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Fig. 1: The proposed framework for safety-critical stabiliza-
tion of mixed-autonomy traffic consisting of connected auto-
mated vehicles (CAVs) and human-driven vehicles (HVs). A
vehicle chain behind a head HV (HHV) is considered with a
head CAV (H-CAV), N HVs and a tail CAV (T-CAV). The
CAV pair is controlled such that they mitigate congestion
while maintaining formal guarantees of safe driving.

a CAV to stabilize the traffic behind it while maintaining
formal safety guarantees.

The aforementioned controllers focus on a single CAV in
mixed traffic. In practice, there may be multiple CAVs within
each other’s communication range, and well-designed inter-
action between them may further improve traffic systems.
Controllers designed for multiple CAVs have shown success
in stabilizing traffic and reducing congestion [4], [9], [15].
However, understanding the effect of the interaction between
CAVs on safety and addressing how to coordinate CAVs to
avoid collisions is still an open question.

In this paper, we propose safety-critical traffic controllers
for multiple CAVs in mixed-autonomy traffic. Specifically,
we consider a pair of CAVs that drive amongst HVs and
respond to each other; see Fig 1. First, we design stabilizing
controllers that allow the CAVs to mitigate congestion and
ensure smooth traffic. By analyzing the underlying stability
conditions, we derive stability charts and show that the
response of the two CAVs to each other enhances the stability
of mixed traffic. Second, we design safety-critical controllers
for the two CAVs via CBFs to formally guarantee their safe
driving behavior. We demonstrate by numerical simulations
that, with the proper choice of control gains, the integration
of the stabilizing traffic controller and CBFs achieves both
string stability and front-end collision-free safety.

The rest of this paper is organized as follows. We for-
mulate the dynamics of mixed-autonomy traffic with a CAV
pair in Section II. In Section III, we design stabilizing traffic
controllers based on stability charts. In Section IV, we utilize
CBFs to design safety filters for the two CAVs, and analyze
their safety and performance via numerical simulations.

II. PROBLEM FORMULATION

We consider a vehicle chain consisting of two CAVs
traveling in traffic as shown in Fig 1. The head CAV (H-
CAV) follows some head vehicles and leads N following
HVs indexed from 1 to N . The tail CAV (T-CAV) is at the
end of the considered vehicle chain and follows HV-N .



HV dynamics: For HV-i, its speed vi ∈ R and gap si ∈ R
follow:

ṡi = vi−1 − vi, (1)
v̇i = Fi(si, vi, ṡi), (2)

where vi−1 ∈ R is the speed of its leader vehicle HV-(i−1),
and Fi : R3 → R describes the driving strategy of HV-i,
such as the optimal velocity model (OVM), or the intelligent
driver model (IDM). For HV-1 that directly follows the head
CAV, we use the notation v0 = vH to represent the speed of
its leader, the head CAV.

CAV dynamics: For the two CAVs, their accelerations
are controlled by the designed controller. For the head CAV
(H-CAV), its gap sH ∈ R and speed vH ∈ R are governed as:

ṡH = vd − vH, (3)
v̇H = uH, (4)

with vd ∈ R being the speed of the head HV (HHV) ahead
of the H-CAV, and uH ∈ R being the control input for the
H-CAV. For the tail CAV (T-CAV), the dynamics of its gap
sT ∈ R and speed vT ∈ R are:

ṡT = vN − vT, (5)
v̇T = uT, (6)

where uT ∈ R is the control input of the T-CAV. By designing
control laws for (4) and (6), we aim to stabilize the mixed
traffic system. In addition, we seek formal safety guarantees
for both CAVs by integrating their controllers with CBFs.

III. STABILIZING CONTROLLER DESIGN

In this section, we first present a general controller for
the two CAVs by extending the controller introduced in [9].
Then we analyze plant and string stability.

A. Nonlinear controller design
We assume that the two CAVs can measure their own

gap, their own speed, and the speed of their preceding
vehicle by on-board sensors. Furthermore, they can obtain
the speed and position of each other via vehicle-to-vehicle
(V2V) communication. The states of some of the middle HVs
may also be available to the CAVs if they are equipped with
communication devices. For each CAV, its controller consists
of three parts: adaptive cruise control based on its preceding
vehicle, state feedback using middle HVs’ state, and coupling
with another CAV. For the head CAV, its controller uH is:

uH =αH(VH(sH)− vH) + βH,d(W (vd)− vH)

+

n1∑
i=1

βH,i(W (vi)− vH) + βH,T(W (vT)− vH), (7)

where βH,d, βH,i, and βH,T are the control gains with respect
to the speeds of the HHV, middle HVs, and the tail CAV,
respectively. The function W : R → R is defined as:

W (v) = min{v, vmax}, (8)

with vmax ∈ R being the maximum speed. The control gain
αH adjusts the head CAV’s acceleration with respect to the
desired speed VH(sH) based on the gap sH. We use 1 ≤

n1 ≤ N to represent that n1 HVs are within the H-CAV’s
communication range. If HV-i is not connected and the CAV
cannot obtain its speed, then the CAV does not respond to
it, i.e., the corresponding control gain becomes βH,i = 0.

The tail CAV’s acceleration is controlled as:

uT =αT(VT(sT)− vT)

+

N∑
i=n2

βT,i(W (vi)− vT) + βT,H(W (vH)− vT), (9)

where αT, βT,i, and βT,H are the controller gains, and 1 ≤
n2 ≤ N . If HV-i is not connected to or detected by the tail
CAV, we have βT,i = 0. For the gap-dependent desired speed,
we take VH(s) and VT(s) as the following range policy:

V (s) =


0, s ≤ sst,
vmax

s−sst
sgo−sst

, sst < s < sgo,

vmax, s ≥ sgo,

(10)

where sst and sgo are the standstill gap and free-driving gap.

B. Linear stability analysis
In this subsection, we analyze the stability of mixed traffic

in the Laplace domain after linearization. The results reflect
the local linear stability performance, i.e., when there are
small perturbations around an equilibrium state.

We first linearize the mixed-autonomy system (1)-(6)
around the equilibrium. At the equilibrium state, the vehicle
chain drives at a uniform speed v∗ ∈ R. The HVs keep the
gap s∗i ∈ R decided by Fi(s

∗
i , v

∗, 0) = 0. We take small
perturbations around the equilibrium as ṽi = vi − v∗ and
s̃i = si − s∗i . The HV dynamics (1)-(2) are linearized as

˙̃si = ṽi−1 − ṽi, (11)
˙̃vi = ai1s̃i − ai2vi + ai3vi−1, (12)

with ai1 =
∂Fi(s

∗
i ,v

∗,0)
∂si

, ai2 =
∂Fi(s

∗
i ,v

∗,0)
∂ṡi

− ∂Fi(s
∗
i ,v

∗,0)
∂vi

,
ai3 =

∂Fi(s
∗
i ,v

∗,0)
∂ṡi

. The head CAV drives at the equilibrium
speed v∗ < vmax and keeps a gap s∗H that can be designed
according to VH(s

∗
H) = v∗. We take the state perturbations as

s̃H = sH − s∗H, ṽH = vH − v∗, and the linearized dynamics:

˙̃sH = ṽd − ṽH, (13)
˙̃vH = ũH, (14)

where the controller is

ũH =ξHs̃H + ηHṽH + βH,dṽd +

n1∑
i=1

βH,iṽi + βH,TṽT, (15)

with ξH = αHV
′
H(s

∗
H), ηH = −αH − βH,d −

∑n1

i=1 βH,i − βH,T.
The tail CAV drives at the speed v∗ and keeps a gap
s∗T ∈ R designed via VT(s

∗
T) = v∗. With the perturbations

s̃T = sT − s∗T, ṽT = vT − v∗, the linearized dynamics are:

˙̃sT = ṽN − ṽT, (16)
˙̃vT = ũT, (17)

where the controller is:

ũT =ξTs̃T + ηTṽT +

N∑
i=n2

βT,iṽi + βT,HṽH, (18)



with ξT = αTV
′
T(s

∗
T), ηT = −αT −

∑N
i=n2

βT,i − βT,H.
We analyze stability based on the head-to-tail transfer

function [18] defined as:

G(s) =
ṼT(s)

Ṽd(s)
, (19)

with Ṽd(s) and ṼT(s) being the Laplace transforms of the
speed perturbations of the head HV, ṽd, and the tail CAV,
ṽT, respectively. For the linearized system, its head-to-tail
transfer function G(s) is given as in (20).

Lemma 1. The head-to-tail transfer function is

G(s) =
(βH,ds+ ξH)ϕT

(s2 − ηTs+ ξT)ϕH − βH,TsϕT

, (20)

where

ϕH =(s2 − ηHs+ ξH)Ω0 −
n1∑
i=1

βH,isΩi, (21)

ϕT =βT,HsΩ0 + ξTΩN +

N∑
i=n2

βT,isΩi, (22)

with Ω0 =
∏N

i=1(s
2 + ai2s+ ai1),

Ωi =

i∏
j=1

(aj3s+ aj1)

N∏
j=i+1

(s2 + aj2s+ aj1), (23)

for 0 < i < N , and ΩN =
∏N

i=1(ai3s+ ai1).

We analyze the stability of the mixed-autonomy traffic
system with respect to two types of stability notions: plant
stability and heat-to-tail string stability.

Plant stability: Plant stability requires that each vehicle’s
state can converge to the equilibrium value. The system is
plant stable if all characteristic roots of D(s) = 0 have
negative real parts with D(s) being the denominator of the
transfer function G(s). The system is at the plant-stability
boundary when D(s) = 0 has a real root s = 0 or has a
complex conjugate pair of roots s = ±jω with j2 = −1 and
ω > 0. For the first case, the stability boundary is:

D(0) = 0. (24)

For the second case, the stability boundary is given as:

Re(D(jω)) =0, (25)
Im(D(jω)) =0, (26)

with Re(·) and Im(·) representing the real and imaginary
parts of a complex number.

String stability: String stability requires that perturbations
are attenuated along the vehicle chain when the motion (i.e.,
speed) of the leading vehicle is perturbed. By designing CAV
controllers to meet string stability, CAVs help to mitigate
traffic congestion and smooth traffic. For the vehicle chain
in Fig. 1, we use the commonly adopted notion of head-
to-tail string stability [18], which requires that when the
speed of the head HV fluctuates, the tail CAV must have a
smaller speed perturbation. More precisely, the vehicle chain
is considered head-to-trail string stable if

|G(jω)| < 1, ∀ω > 0. (27)
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0 0.5 1 1.5 2
! (rad/s)

0

1

2

jG
(j

!
)j

A

string unstable

0 0.5 1 1.5 2
! (rad/s)

0

0.5

1

jG
(j

!
)j

B

string stable

(b) Frequency Response

Fig. 2: Stability chart of mixed autonomy-traffic with a CAV
pair. When the two CAVs do not respond to each other
(see point A with βH,T = βT,H = 0), the system is head-to-
tail string unstable. The system becomes string stable after
adding coupling terms in the controller (point B).

We note that |G(0)| = 1, and that there are two cases for the
string stability boundaries. In the first case, the maximum of
|G(jω)| is at ω = 0, and the stability boundary is given as:

lim
ω→0+

P (ω) = 0, (28)

according to [9], where

P (ω) =
1

ω2
(|D(jω)|2 − |N(jω)|2), (29)

and N(jω) is the numerator of the transfer function G(jω).
In the second case, we have |G(jω)| = 1 for some positive
ω. The stability boundary is a family of curves parameterized
by the wave number θ ∈ [0, 2π) [9], obtained from

G(jω) = e−jθ, (30)

which is equivalent to

Re(D(jω))−Re(N(jω)) cos θ+Im(N(jω)) sin θ=0, (31)
Im(D(jω))−Re(N(jω)) sin θ−Im(N(jω)) cos θ=0. (32)

As discussed below, these stability boundaries can be ex-
pressed as functions of the CAVs’ control gains, which
facilitates stabilizing control design.

C. Stability chart

As a result of stability analysis, we plot stability charts,
which show the stability boundaries in the space of controller
parameters and distinguish those parameters that make the
system stable, ultimately enabling stabilizing control design.

We consider a vehicle chain with N = 4 middle HVs. For
the human driver model Fi in (2), we implement the optimal
velocity model (OVM):

Fi(si, ṡi, vi) = α (V (si)− vi) + βṡi. (33)

The first term reflects how human drivers accelerate to match
the desired gap-dependent speed V (s), and the second term
represents how human drivers accelerate based on the speed
difference. We let V (s) be the same for HVs as the CAVs’
spacing policy in (10), and we set the parameters as: α = 0.3
s−1, β = 0.6 s−1, sst = 5 m, sgo = 30 m and vmax = 35
m/s. We set the equilibrium speed as v∗ = 20 m/s, and we
obtain the equilibrium gap from V (s∗) = v∗ as s∗ ≈ 19
m for both HVs and CAVs. We take the controller gains as
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Fig. 3: Stability chart with βT,H = 1.5. The head CAV’s
response to the tail CAV can help achieve string stability
(see points C with βH,T = 0 and D with βH,T ̸= 0).

αH = 0.3 s−1, βH,d = 0.5 s−1, βH,i = 0.1 s−1, αT = 0.2
s−1, βT,i = 0 for i = 1, 2, 3, and βT,N = 0.4 s−1.

In Fig. 2, we plot the stability chart in the (βH,T, βT,H)
domain. In particular, for the linearized system, we have

D(0) = αTαHV
′
H(s

∗
H)V

′
T(s

∗
T)Π

N
i=1ai1, (34)

which shows that D(0) is independent of βH,T and βT,H. Thus
we ignore the plant stability boundary with ω = 0 in (24).
To plot the other stability boundaries, we first note that
both Re(D(jω)), Im(D(jω)), Re(N(jω)) and Im(N(jω))
are linear with respect to βH,T and βT,H. For the plant stability
boundary with ω > 0, we express βH,T and βT,H from (25)-
(26) and get the boundary parameterized by ω as the red line
in Fig. 2. The region above the red line represents controller
gains that satisfy the plant stability condition. For example,
the gains at points A and B both achieve plant stability.

For the string stability boundary with ω = 0, we solve (28)
for βH,T, βT,H, and get the dashed blue line in Fig. 2. For the
string stability boundary with ω > 0, we solve (31)-(32) for
βH,T and βT,H, which yields a curve parameterized by ω for
each value of θ. The thin curves represent the string stability
boundaries for each θ with the color bar from brown to green
indicating the value of θ. The region of controller gains
that render the mixed-autonomy traffic head-to-tail string
stable is the grey-shaded area enclosed by these curves. For
example, the controller of point B achieves string stability
and attenuates perturbations along the vehicle chain, while
point A causes string unstable behavior, as demonstrated
also by the frequency response plots on the right; cf. (27).
Importantly, string stability cannot be achieved if the two
CAVs do not respond to each other (i.e., if βH,T = βT,H = 0).

In Fig. 3, we plot the stability chart in the (βH,d, βH,T)
domain. We see that the response of the head CAV to the
tail CAV with a proper choice of βH,T gain can enlarge the
range of βH,d gains that achieve string stability. This is also
highlighted by points C and D, which are both plant stable,
and point C with βH,T = 0 is string unstable, while point D
with βH,T ̸= 0 is string stable.

IV. SAFETY-CRITICAL CONTROL VIA CBFS

In this section, we first introduce CBFs, and then utilize
them to design safety filters for the two CAVs.

A. Preliminaries on CBFs
Consider an affine control system with state x ∈ D ⊂ Rn

and control input u ∈ U ⊂ Rm:

ẋ = f(x) + g(x)u, (35)

with f and g being locally Lipschitz. The system is safe if its
state stays in a safe set C, i.e, x ∈ C. Let C be the 0-superlevel
set of a continuously differentiable function h : D → R:

C = {x ∈ Rn : h(x) ≥ 0}. (36)

Definition 1 (Control Barrier Function [2]). Function h is
called a control barrier function for the system (35) on C if
there exists an extended class-K∞ function γ such that

sup
u∈U

Lfh(x) + Lgh(x)u ≥ −γ(h(x)), ∀x ∈ C, (37)

with Lfh = ∇h(x) · f(x) and Lgh = ∇h(x) · g(x).

The CBF is used to guarantee safety as in Theorem 1.

Theorem 1 (Safety guarantee by CBF [2]). If h is a control
barrier function for (35) on C, then any locally Lipschitz
continuous controller u satisfying

Lfh(x) + Lgh(x)u ≥ −γ(h(x)), ∀x ∈ C, (38)

renders the set C forward invariant (safe), i.e, x(t) ∈ C,
∀t ≥ 0 holds for the closed-loop system for all x(0) ∈ C.

To control a system with formal safety guarantees, CBFs
can be integrated with a pre-designed nominal controller u0.
In particular, the nominal control input can be modified in a
minimal way to synthesize a safety-critical control input, by
solving the quadratic program (QP):

u = argmin
u∈Rm

∥u− u0∥2,

s.t. Lfh(x) + Lgh(x)u+ γ(h(x)) ≥ 0,
(39)

that is also referred as safety filter. The QP has an explicit
solution given by the Karush–Kuhn–Tucker (KKT) condi-
tions:

u =


u0, ψ(x) ≥ 0,

u0 −
ψ(x)Lgh(x)

⊤

Lgh(x)Lgh(x)⊤
, ψ(x) < 0,

(40)

where ψ(x) = Lfh(x) + Lgh(x)u0 + γ(h(x)). When the
control input is a scalar, i.e., u ∈ R, and Lgh(x) < 0 for all
x, the solution (40) is equivalent to the more concise form:

u = min

{
u0,−

Lfh(x) + γ(h(x))

Lgh(x)

}
. (41)

B. Safety filters for CAVs via CBFs

Now we use CBFs to ensure formal guarantees of safety
for the CAVs w.r.t. front-end collisions. We adopt the con-
stant time headway (CTH) safe spacing policy from [19].
For a vehicle with speed v and gap s, CTH requires:

s ≥ τv, (42)

where τ > 0 is the safe time headway.
To apply the CTH by CBFs, we define the safety function:

h(x) = s− τv. (43)

For the head CAV dynamics (3)-(4), that are associated with
x =

[
sH vH

]⊤
, f(x) =

[
vd − vH 0

]⊤
and g(x) =

[
0 1

]⊤
,



TABLE I: Four types of controllers for the two CAVs

H-CAV Nominal (7) H-CAV CBF (44)
T-CAV Nominal (9) I II

T-CAV CBF (45) III IV
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Case III: uH (7) and usT (45)
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Case IV: usH (44) and usT (45)
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Fig. 4: Simulation of the proposed safety-critical traffic con-
trollers. Nominal stabilizing controllers yield string stability,
and CBFs-based safety filters on both CAVs ensure safety.

the safety function h in (43) provides the safety-critical
control input usH ∈ R via (41) as:

usH = min

{
uH,

vd − vH + γH(sH − τHvH)

τH

}
. (44)

Here, uH is the nominal stabilizing controller in (7). Simi-
larly, the safety-critical input usT ∈ R for the tail CAV is:

usT = min

{
uT,

vN − vT + γT(sT − τTvT)

τT

}
. (45)

C. Safety and stability performance analysis
We run simulations to study the performance of the

proposed safety-critical controllers. We use the parameters
in Section III-C. A safety-critical scenario is considered in
which the HHV suddenly decelerates. This may be caused
in real traffic by an aggressive cut-in or a pedestrian. We set
the HHV’s acceleration as:

v̇d =

 −ad, t ∈ [2, 2 + ∆vd/ad],
ad, t ∈ (2 + ∆vd/ad, 2 + 2∆vd/ad],
0, otherwise,

(46)

Case I: uH (7) and uT (9)
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(b) Tail CAV
Case II: usH (44) and uT (9)
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(c) Head CAV
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Case III: uH (7) and usT (45)
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Case IV: usH (44) and usT (45)
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Fig. 5: The range of speed perturbations of the HHV that
causes no collisions for the following CAVs.

where ad is HHV’s acceleration, ∆vd is the speed perturba-
tion of HHV, and ∆vd/ad is the duration of deceleration.

Figure 4 shows the simulated response of the vehicle chain
by plotting the profiles of gap s and speed v for ad = 5 m/s2

and ∆vd = 20 m/s. We compare four cases, highlighted
in Table I, depending on whether the head and tail CAVs
use the nominal or the safety-critical controller. When both
CAVs use nominal controllers in Fig. 4(a), they achieve head-
to-tail string stability, but the head CAV collides with the
HHV. By using safety filter on the head CAV in Fig. 4(b), it
avoids collisions, but there is a collision for the tail CAV that
runs the nominal controller. By using safety filter on the tail
CAV only, the head CAV remains unsafe in Fig. 4(c). Finally,
using CBF-based safety filters on both CAVs in Fig. 4(d)
successfully achieves safety for both. Remarkably, head-to-
tail string stability is still observed as the tail CAV reduces
its speed much less than the HHV.

After repeating these simulations with various parameters,
Fig. 5 highlights the range of HHV speed perturbations that
causes no collision (s ≥ 0) for the CAVs, as a function of
the nominal controller gain βH,T. The safe region in Fig. 5
shows that using CBFs to maintain safety for the head CAV



0 5 10 15 20
speed perturbation of the head HV (m/s)

0

5

10

15

20

25
sp

ee
d 

pe
rt

ur
ba

tio
n 

of
 T

-C
A

V
(m

/s
)

string unstable

string stable

Case I
Case II
Case III
Case IV

(a) βT,H = 0, βH,T = 0

0 5 10 15 20
speed perturbation of the head HV (m/s)

0

5

10

15

20

25

sp
ee

d 
pe

rt
ur

ba
tio

n 
of

 T
-C

A
V

(m
/s

)

strin
g unstable

strin
g stable

Case I
Case II
Case III
Case IV
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(c) βT,H = 0, βH,T = 0.5
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(e) βT,H = 0, βH,T = 1

0 5 10 15 20
speed perturbation of the head HV (m/s)

0

5

10

15

20

25

sp
ee

d 
pe

rt
ur

ba
tio

n 
of

 T
-C

A
V

(m
/s

)

strin
g unstable

strin
g stable

Case I
Case II
Case III
Case IV

(f) βT,H = 1.5, βH,T = 1

Fig. 6: Speed perturbation of the head HV and the tail CAV.
The mixed traffic vehicle chain is string stable if the tail CAV
has a smaller speed perturbation than the HHV.

may cause collisions for the tail CAV if it uses the nominal
controller, but not vice versa. When both CAVs use safety-
critical controllers, there are no collisions.

To analyze how the CBFs affect string stability, we
compare the speed perturbation of the tail CAV ∆vT =
maxt≥0 vT(t) − mint≥0 vT(t) to that of the HHV ∆vd in
Fig. 6 for simulations with various controller gains βH,T and
βT,H. We see from Fig. 6(a) that the nominal controller causes
string unstable behavior (∆vT ≥ ∆vd) when the two CAVs
do not respond to each other, i.e., βT,H = βH,T = 0. When
the two CAVs leverage connectivity and respond to each
other as proposed, the nominal controller achieves string
stable driving. For certain control gains, the safety-critical
traffic controllers may sacrifice string stability for safety;
see Fig. 6(c,e). However, well-designed safety-critical traffic
controllers, shown in Fig. 6(b,d,f), can both achieve string
stability and guarantee safety. This highlights the potential
of the proposed safety-critical traffic stabilization method by
CAV pairs to ensure safe and smooth mobility on highways.

V. CONCLUSION

In this paper, we proposed a safety-critical design frame-
work for controlling mixed-autonomy traffic by a pair of
connected and automated vehicles (CAVs). The CAVs travel
within each other’s communication range amongst human
drivers. We designed nominal controllers for the CAVs to
cooperatively achieve head-to-tail string stability and thereby
mitigate traffic congestion. Control barrier functions were
used to minimally modify these controllers to formally
guarantee safety w.r.t. front-end collision. Finally, we demon-
strated safety and string stability in mixed traffic by numer-

ical simulations, and highlighted the benefits of connectivity
between the CAV pair.
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